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MEAN FIELD LQG HIERARCHICAL GAMES WITH MULTIPLICATIVE NOISES:
A DIRECT APPROACH"*

BING-CHANG WANG T, HUANSHUI ZHANG f, AND JI-FENG ZHANG §

Abstract. This paper studies open-loop and feedback solutions to linear-quadratic-Gaussian mean field hierarchical
games with multiplicative noises by a direct approach. The hierarchical game involves a leader and many followers,
where the state and control weight matrices in their costs are not limited to be definite. From variational analysis with
mean field approximations, we obtain a set of open-loop controls in terms of solutions to mean field forward-backward
stochastic differential equations. By applying the matrix maximum principle, a set of decentralized feedback strategies
is constructed. Different from traditional works, a cross term has appeared in derivation due to the appearance of mean
field terms. For open-loop and feedback solutions, the corresponding optimal costs of all players are explicitly given in
terms of the solutions to two Riccati equations, respectively.
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1. Introduction.

1.1. Background and Motivation. Mean field (MF) games have drawn much attention from
various disciplines including control theory, applied mathematics and economics [29], [9], [11], [15]. In
an MF game, the impact of each individual is negligible while the effect of the population is significant.
The main methodology of MF games is to replace the interactions among agents by population aggre-
gation effect, which structurally models the MF interactions in large population systems. Thus, the
high-dimensional multi-agent optimization problem can be transformed into a low-dimensional local
optimal control problem for a representative agent [29], [11]. Wide applications have been found in
many fields, such as economics [54], [48], smart grid [44], engineering [28] and social sciences [3], [13].
As a classical type of MF models, mean field linear quadratic Gaussian (MF-LQG) games are inten-
sively studied due to their analytical tractability and close connection to practical applications. For
works on such kind of problems, readers can refer to [6], [18], [23], [30], [45], [50], [63]. The pioneering
work [22] studied e-Nash equilibrium strategies for MF-LQG games with discounted costs based on
the Nash certainty equivalence. This approach was then applied to the cases with long run average
costs [30] and with Markov jump parameters [50], respectively. For MF games with major players, the
works [21], [12] considered continuous-time LQG games with complete and partial information; [51]
investigated discrete-time LQG games with random parameters; [10] and [41] focused on the nonlinear
case.

In contrast to the above models, the hierarchical (Stackelberg) game involves a leader-follower
structure. Consider a hierarchical game with two layers. One layer of players are defined as leaders
with a dominant position and the other players is defined as followers with a subordinate position.
The leader has the priority to give a strategy first and then followers seek strategies to minimize their
costs with response to the strategies of leaders. According to followers’ optimal response, leaders will
choose strategies to minimize their costs. Hierarchical games have been widely investigated in the
literature (see e.g. [42], [57], [7], [56], [19]). Recently, MF hierarchical games have attracted great
research interest [8], [52], [33], [5], [55]. The work [8] considered MF Stackelberg games with delayed
instructions. [52] studied discrete-time hierarchical MF games with tracking-type costs and gave the
e-Stackelberg equilibrium. Authors in [33] investigated continuous-time MF-LQG Stackelberg games
by the fixed-point method, and they asserted that “complexity brought by coupling among leader and
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2 B-. C. WANG, H. S. ZHANG AND J-. F. ZHANG

followers makes the use of direct approach almost impossible”. This work is further generalized to the
jump diffusion model [32]. Besides, [55] investigated feedback strategies of MF Stackelberg games by
solving the master equations.

Different from noncooperative games, social optimization is a joint decision problem where all
players work cooperatively to optimize the social cost. This is a typical class of team decision problem
[17]. Authors in [23] studied social optima in the MF-LQG control, and provided an asymptotic team-
optimal solution, which is extended to the case of mixed games in [24]. The work [53] investigated the
MF social optimal problem where the jump parameter appears as a common source of randomness.
More investigation can be found in [2] for team-optimal control with finite population and partial
information, [39] for dynamic collective choice by finding social optima, [40] for stochastic dynamic
teams and their MF limit, [46], [20] for MF teams with uncertainty in drift and volatility, and [34]
for social control applications in economics. Besides, see [47] for value-iteration learning in ergodic
MF-LQG social control, and [25] for online policy iteration in MF Pareto optimal control.

Normally, there are two routes to solve MF games and teams. One is called the fixed-point
approach [22, 23, 9, 15], which starts by applying MF approximation and constructing a fixed-point
equation. A set of decentralized strategies can be designed by tackling the fixed-point equation together
with the optimal response of a representative player. In general, the fixed-point equation is difficult
to solve. In addition, when solving the team problem by the fixed-point approach, an additional
variable (called social impact [23, 53]) needs to be introduced. This leads to a drastic increase of
computational complexity for MF teams with multiplicative noises [38], [16]. Another route is called the
direct approach [26, 29, 49], which takes a path from finite-population to infinite-population systems.
By decoupling the Hamiltonian system for N-player, one can obtain a centralized strategy which
explicitly relies on the state of a player and population state average. Applying MF approximations,
the decentralized control can be constructed. By the direct approach, the resulting control is neat and
less computation is required, particularly for team problems [49].

1.2. Contribution and Novelty. This paper considers MF-LQG hierarchical games with a
leader and many followers, where the state and control weight matrices in their costs are allowed to
not be definite. The leader first give his strategy and then all the followers cooperate to optimize the
social cost, the sum of their individual costs. For instance, consider an example of macroeconomic
regulation, where the regulator/government is the leader, and local authorities are followers [36]. The
state of the leader appears in both dynamics and cost of each follower. It shows that the dynamics and
costs of followers are directly influenced by the behavior of the leader. Different from [24] and [33], our
model involves population state average (™) in both drift and diffusion terms in followers’ dynamics.
Until now, most previous works focused on open-loop solutions of MF leader-follower games, and only
a few works were on feedback solutions. Furthermore, the relationship between open-loop and feedback
solutions is still unclear.

In this paper, we study systematically open-loop and feedback solutions to MF hierarchical games
by the direct approach. The open-loop solution starts with solving a centralized social control prob-
lem for followers, and obtaining a system of high-dimensional forward-backward stochastic differential
equations (FBSDEs). By MF approximations, a set of open-loop controls of followers is designed
in terms of an MF FBSDE. After applying followers’ strategies, we derive necessary and sufficient
conditions for the solvability of the leader’s problem, and then obtain the feedback representation of
the open-loop control by decoupling an FBSDE. From perturbation analysis, the proposed strategy is
shown to be an (g1, e2)-Stackelberg equilibrium. Furthermore, we obtain the optimal costs of players
in terms of the solutions of Riccati equations. Next, the feedback solution is investigated for MF
Stackelberg games. Different from the open-loop solution, we presume that the leader has a strategy
with the feedback form. With leader’s feedback gain fixed, we obtain the feedback strategies of fol-
lowers by decoupling high-dimensional FBSDEs. Applying the matrix maximum principle with MF
approximations, we solve the optimal control problem for the leader, and then construct a set of de-
centralized feedback strategies for all players. By the technique of completing the square, we show that
the proposed decentralized strategy is a feedback (g1, e2)-Stackelberg equilibrium and give an explicit
form of the corresponding costs of players.

The main contributions of the paper are listed as follows.

e By adopting a direct approach, the open-loop and feedback solutions to leader-follower MF



100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

121
122
123
124
125
126
127
128

129

130

134
135

136

MEAN FIELD LQG HIERARCHICAL GAMES 3

games with multiplicative noises are obtained. Different from the fixed-point approach, no
additional terms need to be introduced when MF social control problem is solved for followers.
e By variational analysis with MF approximations, an open-loop asymptotic Stackelberg equi-
librium is given in terms of MF FBSDEs, which can be implemented offline.
e By decoupling high-dimensional FBSDEs and applying the matrix maximum principle, a set
of decentralized feedback strategies is constructed. Different from traditional works, a cross
term is introduced for deriving feedback strategies due to the appearance of MF coupling.

1.3. Organization and Notation. The paper is organized as follows. In Section 2, we formulate
the problem of MF-LQG leader-follower games with multiplicative noises. In Section 3, we first obtain a
set of open-loop control laws in terms of MF FBSDEs, and give its feedback representation by virtue of
Riccati equations. In Section 4, we design the feedback strategies of MF Stakelberg games and provide
the corresponding costs of all players. In Section 5, we give a numerical example to demonstrate the
performance of different solutions. Section 6 concludes the paper.

Notation: Throughout this paper, let (2, F, {F; }o<i<7,P) be a complete filtered probability space
augmented by all P-null sets in F. || is the standard Euclidean norm and (-, -) is the standard Euclidean
inner product. For a vector z and a matrix @, ||z[|3, = 27 Qz; @ > 0 (Q > 0) means that the matrix Q
is positive definite (positive semi-definite). Q' is the Moore-Penrose pseudoinverse! of the matrix @,
R(Q) denotes the range of a matrix (or an operator) Q. Let C(0,T; R™*™) be the set of R™*"-valued
continuous function and L%(0,T;R™) be the set of all {F};>¢-adapted R™-valued processes z(-) such
that ||z(t)||3. =: EfOT llz(t)||?dt < oo. For a symmetric matrix S > 0, the quadratic form 2 Sz is
defined as |z||%, where 27 is the transpose of z.

2. Problem Formulation. Consider a large-population system with a leader and N followers.
The state processes of a leader and N followers satisfy the following stochastic differential equations:

(2.1)

dzo(t) Z[ono (t) + Bouo(t)]dt + [Coxo (t) + Doug (t)]dWo(t),

dz;(t) =[Az;(t) + Bu;(t) + Gz™N(t) + Fxo(t)]dt + [Cxs(t) + Dui(t) + Ga ™ (t) + Fxo(t)]dWi(t),
.7,'0(0):50, xl(o) :§i7 221727 7N7

where xg € R™,ug € R™° are the state and input of the leader, and x; € R, u; € R™ are the state
and input of the ith follower, i = 1,--- , N, respectively. z(")(t) £ % Zf\; x;(t) is the state average
of all the followers. {Woy(-), Wi(-), -+, Wn(:)} are a sequence of independent d-dimensional standard
Brownian motions defined on the space (Q, F, {F:}o<i<r, P). Let Fy = o (o, &, Wo(s), Wi(s),0 < s <
tyi =1,---,N)). Denote FY = a(&,Wo(s),0 < s < t) and F} = a(&o, &, Wo(s), Wi(s),0 < s < t)
for i = 1,---,N. The admissible control set for the leader is defined as follows: Uy = {ugluo(t) €
L%rto (0,T; Rm)}. The admissible decentralized control set for all the followers is defined by

Uy ={(u1,--~ Jun)|ui(t) € L?Z(O,T;Rm),i =1, 7]\7}.
Also, the centralized control set for followers is given by
Ue = {(un,- - un)lu(t) € L5, (0, TsR™),i =1, N .
For the leader, the cost functional is defined by
T
(2:2) Jo(uo, u) =]E/O [zo0(t) = Tox™ ()13, + luo(t)[7, | dt + E[Jxo(T) — Toa™ (1) 3, ],

where Qq, Ro and Hy are symmetric matrices with proper dimensions, and v = (u1,- -+ ,un). For the
1th follower, the cost functional is defined by
(2.3)

T
Ji(ug, u) :]E/O [Jzi(t) = Ta™) (&) — T1mo(t)[3 + Jwi(t)|}] dt + E[|zi(T) — Ta™)(T) — Tra0(T) 3],

1QT is a unique matrix satisfying QQTQ = QT, Q1QQT = Q, (QTQ)T = QTQ, and (QQT)T = QQT. See [35] for more

properties of pseudoinverse.
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4 B-. C. WANG, H. S. ZHANG AND J-. F. ZHANG

where ), R and H are symmetric matrices with proper dimensions. All the followers cooperate to
minimize their social cost functional, denoted by

N
1
(24) Js(é\cf UO, N Z: UQ,

Now we make the following assumption.

(A1) {z;(0)} and W;(t),i = 1,2,--- , N are independent of each other. Ezy(0) = & and Ex;(0) =
&, i=1,---,N. There exists a constant ¢y such that SUpP;_19... N E|x;(0)]? < ¢g, where cq is indepen-
dent of N.

We next discuss the decision hierarchy of the Stackelberg game. The leader holds a dominant
position in the sense that it first announces its strategy wug, and enforces on followers. The N followers
then respond by cooperatively optimizing their social cost (2.4) under the leader’s strategy. In this
process, the leader takes into account of the rational reactions of followers.

Due to accessible information restriction and high computational complexity, one generally is not
able to attain centralized Stackelberg equilibria, but only achieve asymptotic Stackelberg equilibria
under decentralized information patterns.

We now introduce the definition of the open-loop (€1, €2)-Stackelberg equilibrium. From now on,
the notation of time ¢ may be suppressed if necessary.

DEFINITION 2.1. A set of control laws (ug,ui,--- ,ul) is an open-loop (€1, €2 )-Stackelberg equilib-
rium if the following hold:
(i) When the leader announces a strategy us(-) € Uy over [0,T), u* = (uf, - ,ul) attains an

€1-optimal Tesponse, i.e.,

JED (ug u*) < T8 (ul,u) + €1, for any u € U,

S0cC S0ocC

(i) For any ug € Up, Jo(ug, u*(uy)) < Jo(ug, u(ug)) + €2, where u* and u are e1-optimal responses
to strategies ug and ug, respectively.

Inspired by [33, 26, 49], we consider feedback strategies with the following form:

ug =FPoxo + P:i‘,
(2.5)

w; =Kz; + K + Koz, i=1,--- ,N
where Py, P, K, K, Ky € Ly(0, T;R" "); 20, x; and T satisfy

dxg = [Agwo + Bo(Poxg + Pz)|dt + [Cozo + Do(Poxo + Px)|dWy,
z; = [Az; + B(Kx; + KT 4 Koxo) + Gz + Fagldt

(2.6) + [Cxi + D(Kz; + KT 4 Koxo) + Gz™N) 4 Fao)dW;,

dz = {[A+ G + B(K + K)|Z + (F + BKy)xo }dt,

20(0) = &, 2:(0) =&, i =1,2,--- ,N, £(0) =&

In the above, # = E[z;|F?] is an approximation of 2(¥) for sufficiently large N,
We now introduce the definition of the feedback (€1, €2)-Stackelberg equilibrium.

DEFINITION 2.2. A set of strategies (lg, U1, -+ ,Un) is a feedback (€1, €2)-Stackelberg equilibrium
if the following hold: -
(i) When the leader announces a strategy o = Poxo + PT at time t, 4 = (Gy,--- ,4y) attains an

e1-optimal feedback response, i.e.,
JS(OC)(’U,O a) < Js(oj\é)(ﬁo, u) + €1, for any u € U,,

where both u; and u; have the form Kz; + Kz + Kozg, i=1,...N; -
(ii) For any ug € Uy, Jo(tio(to),a) < Jo(ug,u(ug)) + €2, where ug has the form Pyxog + PZ; 4 and
u are e1-optimal feedback responses to strategies iy and ug, respectively.
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3. Open-loop Solutions to Leader-Follower MF (Games.
3.1. The MF Social Control Problem for N Followers. Denote

Qr 2 Qr+17Q —17Qr, Hy 2 HI + ITH — PTHT,
Qr, 2 (I-1)TQry, H é (I —D)THT,.

Suppose ug is fixed. We now consider the following social control problem for N followers.
(P1): minimize Jyo over u € U,., where

N
1 . .
T8 (u § :]E/ “xi — Tz — Ty, + Wé} dt + <= > B [|2i(T) = Pa™(T) = Drao(T)|7]
—

By examining the social cost variation, we obtain the optimal control laws for N followers. The
proof is similar to that of Theorem [49], and hence omitted here.

THEOREM 3.1. Problem (P1) admits an optimal control if and only if JN. is convex in u and the
following system of FBSDEs admits a set of adapted solutions {x;,p;,q!,i,j =1,--- ,N}:

dx; = (Az; + Bu; + Gz + Fxo)dt + (Cz; + Da; + Gz + Fxg)dW;,

(3.1)  Qdp; =—(ATpi + G"p™ + g + GT¢"™) + Qui — Qra™) — Qr, o dt+Z gl Wy,
7=0

where p(N) = ~ Z _1DPj, q =% Z 1qj, and the optimal control laws of followers 1; satisfy
RuerBTp +DT i=0,i=1,---,N.

Indeed, if I oc is uniformly convex in u, then Problem (P1) admits an optimal control necessarily
[59]. For further existence analysis, we assume

(A2) Js(é\é) is uniformly convex in w.
Denote Ezol-] = E[-|F]. Letting N — oo, by the law of large numbers, we can approximate &,
p; in (3.1) by Z;, p;, i = 1,--- , N, which satisfy
dz; = (AZ; + Bu} + GEzo[Z;] + Fxo)dt + (CZ; + Du} + GExo[Z;] + Fxo)dW;,
dp; = —(ATp; + GTExolpi] + CTq; + G Exo[g}] + QFi — QrEzo[zi] — Qr,mo)dt
+ @ dW; + @ dWy,
z;(0)=¢&, i=1,---,N, pi(T) = Hz;(T) — HpExo[z;(T)] — Hp wo(T),

(3.2)

with the decentralized control u} satisfying
(3.3) Ruf + BTp, + DT =0, i=1,--- ,N.

We now use the idea inspired by [59], [49], [37] to decouple the FBSDE (3.2). Let p; = PZ; +
KExo[Z;] + ¢, i =1,---,N. Then, we have
(3.4)

dp; = Pz;dt +do + P [(Aa*:i + Bii; + GExo[Z;] + Fag)dt + (CZ; + Du; + GExo[Z;] + Fxo)sz}
+ KE o [z;]dt + K[(A + G)Exo[2;] + BEo[t;] + Fao|dt
= — [AT(P3; + KEpo[m] + ¢) + CTIg]] + GT((P + K)Epolai] + ¢) + GTEo[g]]
+ Qs — QrEgoli] — Qr,wo| dt + alaW; + ¢l dWh,
which implies

(3'5) (jf:P(Ci'i-i-Dﬂi+GE]:0[E'1-]—|—F$0)7 i=1,---,N.
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This together with (3.3) leads to
Ru} + BY(Pz; + KEzo[%;] + ) + DT P(C%; + Di; + GExo[%;] + Fxg) = 0.
Let T 2 R+ DTPD. If R(BT)UR(DTP) C R(Y). Then, we have
(3.6) uf =—="T1[(B"P+D"PC)z; + (B"K + D" PG)Exo[z;] + B ¢ + DT PFxo).
This together with (3.4) gives
(37)  P+ATP+PA+CTPC+Q— (B"P+DTPC)" Y (B"P+ DTPC) =0, P(T) = H,
(38) K+(A+G)T"K+KA+G)+G"P+PG—Qr+CTPG+GTP(C+G)
— (BTP+ DTPC)TYY(BTK + DTPG) — (BTK + DTPG)TYT (BT P + DT PC)
— (BTK + DTPG)"Y!(BTK + DTPG) =0, K(T) = —H;,
(39)  dp+{[A+G = BY(B'(P+K)+DTP(C+ )] o+ [(P+ K)Fp
+(C+G)"PFp —Qr, xo}dt —qdWo =0, ¢(T) = —Hlexo(T)7

where Fg 2 F — BY'DTPF and Fp £ F — DYIDTPF. We assume
(A3) Equations (3.7)-(3.9) admit a set of solution (P, K, ¢) such that T > 0, and

(3.10) R(BT)UR(DTP) C R(Y).
Let I = P 4+ K. Then, II satisfies
(3.11) M+ (A+ Q)T +1(A+G) — [B"1+ DTP(C + &))" YT [BTTL + DTP(C + G)]

+(C+&)'P(C+G)+Q—-Qr=0, I(T) = H - H;.

Note that if @ > 0 and H > 0, then @ — Qr = (I —T)7Q(I —T) > 0 and H — Hy > 0. Thus, when
Q>0,R>0and H >0, (3.7) and (3.11) admit a unique solution, respectively. This implies (3.8)
has a unique solution, which further gives (A3).

From the above discussion, we have the following result.

PROPOSITION 3.2. Under (A3), the decentralized control given by (3.3) has a feedback representa-
tion (3.6).

Applying (3.6) into (3.2), we obtain that & = Exo[Z;] satisfies
(312) dz=[(A+G-BY'BTII - BY'D"P(C + G))z — BY'BTp + (F — BY'DPF)z,]dt.
3.2. Optimization for the Leader. Denote A 24— BY'(BTP + DTPC), and C 20—
DYY(BTP 4 DTPC). After applying the control laws of followers in (3.6), we have the following

optimal control problem for the leader.
(P2): minimize Jo(uo, u*(ug)) over ug € L% (0,T;R™), where

T
Jo(uo, u*(ug)) = E/ (|20 — Toxl™ 2, + [uol%, |dt + E[|zo(T) — oa™ (T) %],
0

dl‘o = (A0$0 + Bo’u,o)dt + (00330 + Douo)dWO, 11‘0(0) = f(),
(3.13)
dzt = [Axt + Ga™) — BYV((BTP + DT PC)#; + (BTK + DT PG)z + BT ) + Fyaxo|dt
+ [Cat + G2 — DYT((BTP + DTPC)z; + (B'K + DT PG)z + By) + Fpxo|dW;,
7 (0) = &,
(3.14)
dp = f{ [A+G - BY!(B'K + DTPG)| ¢+ [(P+ K)Fp + (C + Q)T PFp + (I — I)TQFl]xO}dt
+ ) dWo,(T) = (I' = )T HT 120 (T),
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where 7 is the realized state under the control w},7 = ,N, and 2V = N 21 L 7. From (3.14),
we have

dz™ =[(A+ @)™ — BYT((BTP + DT PC)z™) + (BTK + DT PG)Z + BT ) + Fgao|dt
N
+ % > [Car+ Gz™) — DY ((BTP + DTPC)z; + (BTK + DT PG) + By) + Fpao]dWi,
i=1

1 N
i=1

where z(V) = L Zivzl Z;. Note that {W;} are independent Wiener processes and {z;(0)} are indepen-

dent r.v.s. For the large population case, it is plausible to replace z(V), 2 by Z, which evolves from

(3.12). Then we have the limiting optimal control problem for the leader.
(P2"): minimize Jo(ug, u*(ug)) over ug € Up, where

T
(3.15) Jo(uo, u* (uo)) ZE/O [lzo — oz, + [uolh, | dt + E oo — Loz (T)[3,]

subject to
xo =(Aoxo + Boug)dt + (Coxg + Doug)dWo, x0(0) = &,
[(A+G)z — BY' BT + (F — BY'DTPF)xo]dt, #(0) = ¢,
- {(A +G) o+ [(P+ K)Fp + (C+G)TPFp+ (I - I)TQl“l]xO}dt
+q)dWo, o(T) = (T = I)" HT12o(T).

dz

(3.16)

Q.
AS)
|

with G 2 G — BY'(BTK + DTPG).
We first provide the condition under which Problem (P2’) is convex. The proof is similar to [18],
[49], and so omitted here.

LeEMMA 3.3. Jo(ug, u*(uo)) is convex in ug if and only if J§(ug,u*(ug)) > 0, where

B0, =& [ [~ T, + ol ]t + BI(T) - Doz,
subject to
dxg =(Agxd + Boug)dt + (Cozd + Doug)dWo, (0) =0,
O —[(A+&)z° — BY'BT® 4 (F — BYT DT PF)ad)dt, 7°(0) =0,
ag” =~ {(A+G)"¢" + [(P+ K)Fy + (C + G)"PFp + (T — )" QT1]xf }at
+q; " dWo, @*(T) = (I — I)" HT1a(T).

(3.17)

We now give the following maximum principle for (P2').

~ THEOREM 3.4. Under (A1)-(A3), Problem (P2) admits an optimal control ug if and only if
Jo(ug, u*(ug)) is convex in ug, and the following FBSDE

K)Fp+ (C+G)'PFp — QFJ "

+
)~ Doa*(T)) — HE 4(T),
) = I Ho(wy(T) — Toz* (7)),

+ Qo(zf — Toz*) }dt + BodWo, yo(T) = Ho(zo
dj=—[(A+G)Ty —T§ Qo(ay — Loz )] + BdWy,
dy =[(A+ Gy — BYTBTg]dt, (0) =

dyo = — {Af'yo + CJ Bo + (F = BY'D"PF)Ty+ [(P
(3.18) .
y(T

has a solution such that u satisfies Roug + Bl yo + D& By = 0.
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Proof. Suppose {u$} is a candidate of the optimal control of Problem (P2’). Let z§ and Z* be the
leader’s state and followers’ average effect under the control {ug}. Note that

(3.19) jo(ug + Oug, u(uy + Oug)) — jo(ué,u*(ug)) =201, + 621,
where
T
(3.20) I, =K / [(Qo(a — To.), 28 — To) + (uf, Rouo)]dt
0

+E[(Ho (25 (T) — Loz (T)), aq(T) — Toz*(1))],

T
(3.21) I :]E/O [0 — Toz%13), + luolk, |dt + E[|z(T) — Loz’ (T)|%, |-

Considering that for the given z{ and z*, FBSDE (3.18) admits a unique solution (One can solve

BSDE for (g, ) first, then solve FSDE for ¢ and finally solve BSDE for (yo, 50)), by (3.17) and (3.18)
and applying It6’s formula, we obtain

(3.22)  E[(Ho(zg — Toz") + TTH(L — D (T), 2§(T))] = El(yo(T), 25(T)) — (0 (0), 2(0))]
=K /OT {< — [(F = BY'D"PF)"y + (B{ yo + D§ Bo, o) + [(P + K)Fp + (C + G)" PFp
+ (T = 1)7Q] "o + Qola — Toz*)] ) b,
(3:23)  —E[{[§ Ho(xg — Loz*), 2°(1))] = E[(@(T),2°(T)) — (5(0),2°(0))]

T
=E / (T8 Qo(zo — Toz),2°) — (BYTBg,¢% + (F — BY'D"PF)"g,20)]dt.
0

and
(3.24) E[((I — DT HE 12§ (T), w(T))] = E[@’(1), ¥(T)) — (¢°(0),$(0))]
T
:E/ [(=BYTBT5,6°) — ([(P+ K)F + (C+ G)T PFp + (T = TQI1] "5, f) | dt.
0
T

From (3.20) and (3.22)-(3.24), it follows that I, :]Ef/ <B0Ty0 + DEBy + Ruf, ug)dt. Note that 0

is arbitrary. Then, by (3.19), u§ is a minimizer of (Pg’) if and only if Iy = 0 and Iy > 0. Thus, by
Lemma 3.3, u} is an optimal control of (P2’) if and only if Ru$ + BT yo + DI By = 0 and Jo(ug, u(ug))
is convex in ug. O

Let X = [$g7fT, 'l/)T]Tv Y = [yg’,gT’ ‘PT]T’ Z = [ﬁga BT, (q?)T}TvBO = [Bg’ov 0}T7,D0 = [Dg7O’O]T7
and

Ao 00 0 0 0
A= | F-BY'DTPF A+G 0 B=10 0 BYTBT ||
0 0 A+G 0 BY'BT 0
Co 0 0 Ho —Hol'y TTH(I —1)
CO = 0 0 0 ,Ho - —FgHO FgHoro 0 5
0 00 (T —NTHT, 0 0
[ —Qo QoL F?QQI -T) - JTET;H_
—-FLP(C+G)
o= I'f Qo —I'fQoTo 0

(I -T)7Qr, — IIFg
~(C +G)PFp 0 0
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Then, we can rewrite (3.16) and (3.18) as

(3.25) {dX = (AX — BY + Boug)dt + (CoX + Douf)dWo, X(0) = [¢1, €7, 0]

dY = (QX — ATY — ¢l Z)dt + ZdWy, Y(T) = HoX(T),
together with the condition
(3.26) Roul +BYY + D3 Z = 0.

We now provide a sufficient condition to guarantee the solvability of (3.25).

PROPOSITION 3.5. Denote Yo=Rg + DI PDy. If the equation
(3.27) P+PA+ATP +CIPCy— Q—PBP — (BIP + DIPCy)" ri(BLP + DIPCy) = 0,

with P(T) = Ho has a solution in [0,T], then FBSDE (3.25) is solvable.
Proof. Suppose we have the relation Y (¢) = P(¢t)X(t), t € [0,T]. Then, it follows by It6’s formula that

(3.28) dY =PXdt + P[(AX — BPX + Boug)dt + (CoX + Douy)dWo]
=(QX — ATPX - CT Z)dt + ZdW,
which leads to Z = P(CoX + Doug). Plugging this into (3.26), we have uf = fTEL)(BOTP + DEPCo) X,

which further implies

Z =P[Co — DEYHBEP + DIPCy)] X.
Applying this into (3.28), we obtain (3.27). If the Riccati-like equation (3.27) has a solution in [0, T,
then by [31], FBSDE (3.25) admits an adapted solution. O

Remark 3.6. Noting that B, Q and Ho are symmetric matrices, one can see that (3.27) is a
symmetric Riccati equation. The existence condition of its solution can be referred to [1], [31].

For further analysis, assume
(A4) Equation (3.27) admits a solution in C[0, T;R3"].
Under (A4), we construct the following decentralized control laws

(3.29) {ug =—71i(BIP +DIPCy) X,

u; == T'[(B"P+D"PC)z; + B¢+ D" PFxzj + (B"K + D" PG)Eo|[zi]]

where X, Z; is given by (3.25), (3.2), and zj is the realized state under the control ug.

THEOREM 3.7. Assume that (A1)-(A4) hold. Then (uf, uj,--- ,4*) given in (3.29) is an open-loop
(e1,€2)-Stackelberg equilibrium, where ¢, = O(1/v/N), i = 1,2.

Proof. See Appendix A. O

THEOREM 3.8. For Problem (2.1)-(2.4), assume (A1)-(A4) hold, and &,i = 1,--- N have the

same variance. Under the control (3.29), the corresponding social cost is given by

(3.30) TS (w* ug) = E[1&] o) + 180l 0y + 207 (0)Zo] + s,

and the asymptotic cost of the leader is limy_yo0 Jo(uf, u*) = E[SOTyO(O) + ngj(O)], where

T
(3.31) St :]E/ [[Fzo|p — BT + DT PFag|3 + 20" Fao + |T1o|g ] dt.
0

Proof. See Appendix B. O

4. Feedback Solutions to MF Leader-Follower Games. In this section, we consider the
feedback solution to the MF Stackelberg game (2.1)-(2.4). For simplicity, we consider the case that
Q>0,Q >0, R>0,Ry>0,H >0and Hy > 0.
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4.1. The MF Social Control Problem for N Followers. Note that the leader plays against
all followers. Assume that the leader admits a feedback control of the following form

(4.1) ug = Pyzo + Pz™),

where Py and P are fixed. Then, we have the following social control problem for N followers.

(P3): minimize Js(é\cf)(u) over u € U,, where ug = Pyzg + Px®™) and

(4.2) N N
T
Js(é\é)(u) = %ZE/ {’.’El — F;L'(N)_ F1$0|2Q + |ul|%}dt + %ZE“Q?Z(T) — f‘;(;(N)(T) — f‘le(T)ﬁ{]
i=1 70 i=1

By examining the social cost variation, we obtain the optimal control laws for N followers.

THEOREM 4.1. Suppose @ > 0, R > 0 and H > 0. Assume the leader has the feedback control
(4.1). Then, Problem (P3) has an optimal control in U, if and only if the following system of FBSDEs
admits a set of adapted solutions {x;,pi,ql,i,j =0,1,--- ,N}:
dxg = [A()J?Q + Bo(Poxo + pI(N))] dt + [COIO + Do(Poxo + pI(N))] dWo,
dz; =(Az; + Bi; + Gz™) 4 Fao)dt + (Cxy + Dy + Ga™) + Fay)dW,
dpo = — [(Ao + BoPo)" po + FTp™) 4+ (Co + DoPo) gl + FFg™)

N

— QL a™ +TTQTyz0)] + > qfdW;,
§=0
dp; = — [ATp; + GTp™) + PTBIpy + CTgi + GTq™ + PTDI ¢

N
+ Qi — Qra™) — Qr,Traoldt + ) ¢/dW,
=0

20(0) = &0, i(0) = &, po(T) = 7H§1I(N) (T) + TT HT120(T),
pi(T) = Ha;(T) — Hpa™W/(T) — Hyp 2o(T), i=1,---,N.

Furthermore, the optimal controls of followers are given by
(4.4) ;=R (B"pi+D"q}), i=1,--- ,N.
Proof. See Appendix C. O

Remark 4.2. For the feedback solution case, the term (") appears in leader’s dynamics. Different
from the open-loop case, an additional costate py is needed. Indeed, as u; is perturbed with du;, the
changing magnitude of () is O(||du;||/N), which causes the perturbation O(||du;||) of Jeoc(u). This
is evidently different from the game problem.

Let po = A(I)Vmo + Anz™), and p; = Myz; + Myz™) + MR,:EO, i=1,---,N. Denote ¢V) =
% Zivzl ;. Then, by applying Itd’s formula to p;, we have
(4.5)

dp; :MNmidt + My [(Al‘l + Bu; + Gl‘(N) + Fxo)dt + (Cl‘l + Du,; + G.Z‘(N) + Fmo)dWZ]
N
KX _ 1 — _
+ Myz™ + My [(A +@)a ™ + Bu™) 4 Fag)dt + — >~ (Ca; + Diyy + Ga™ + Fxo)dwj}
j=1
+ M](\)/Lliodt + MR] [(Aol'o + Bo(Po.TO + pJC(N)))dt + (Ool‘o + DQ(P().Z’O + pJL‘(N)»dWQ]
= — [AT(MNLL'Z + MNLL'(N) + MR;{L‘()) + GT((MN + MN)LL'(N) + M]%.TO) + PTngo

N
+CT¢ + GT¢™) + PTDY ¢ + Qui — Qra™) + (I — NTQT 1z dt + Z qldw;,
j=0
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which together with (4.3) implies

. 1 - _ _
q§ :(MN -+ NMN)(C’% + Du,; + GQ?(N) + FJ?Q),
(4.6) , 1 . _ B
¢] =5 My (Caj + Dy + Ga™) + Fag), j #i.

By (4.4), we have for any i = 1,--- | N,
_ 1 - _ _
U; + NT; + Myx + Myxo) + N+ —Mny)(Cx; + Di; + Go¥ + Fag) = 0.
Rii; + BT (M Myz™) + MY, DT (M N Mn)(Cai + D Ga™N) 4+ F 0
This leads to
(4.7) ;= -YN [(B"My + DT MnC)z; + (BT My + D" MyG)z™) + (BT MY, + DT My F)xo),
where My S v + %MN and T 2 R+ DT MyD. Denote A?\r 2 A?v + %]\N. Applying It6’s formula
to po, we obtain
(4.8) dpo = — [(Ao + BoPo)T (AXywo + Ana™) + FT (M + My)z™ + M)
N
+(Co+ DoPo) gy + FT¢™) —TTQ((I = T)2™) —T'yx0)] dt + Z @AW,
§=0
which together with (4.3) implies
q8 = ]\?V (00.130 + Do(Poxo + PJ?(N))),
1

(4.9) D o
q(j) = NA(CO(I}O + D()(Po.%‘o + P! ))), 7> 0.

Applying (4.6), (4.7) and (4.9) into (4.5), we obtain

My + AT My + MEA+CTMyC + Q — (BT My + DT MyC)T TR
x (B" My + DT MyC) =0, My(T) = H,

]\ZN +(A+ G)TMN + Mn(A+G) + GTMy + MyG + CTMNG
+GTMN(C +G) — Qr + PTDYAYDoP + MY By P + PTBE Ay
— (B"My + D" NN C) 'Y (BT My + DT My G)

(4.10) — (BMy + DTMyG) T (BT My + DT My C)

— (BMy + D™ MyG) Y3 (BT My + DT MyG) = 0, My(T) = —Hy,
MY+ (A+ G)T MY + MY (Ao + BoPo) + (My + My)F + PTBIAY
— [BT(My + My) + DT My (C + G)F YN (BT MY, + DT MF)
4+ (C 4+ G)TMxF + PTDITAS (Co + Do Py) + (I' = I)TQT, =0,

MY (T) = (I — I)THT.
Applying (4.6), (4.7) and (4.9) into (4.8), we have

A + A% (Ao + BoPy) + (Ao + BoPo) ™A%y + (Co + Do Po)" AR (Co + Do Po)
— (BTAL + DT My )T Y (BT MY + DT My F)
+ANF+FTMY + FTMF +T7QT, =0, A(T) =TTHT,
An + AN(A+G) + (Ao + BoPy)"Ay + FT(My + My) + AN Bo P
— (BTAL + DT My F)'Y BT (My + My) + DT My (C + G)]
+ FTMy(C+G)+TTQ( —1) =0, AN(T) =TTH(I - I).

(4.11)

Based on Theorem 4.1 and the above discussion, we have the following result.
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PROPOSITION 4.3. Assume (A1) holds, and (4.10)-(4.11) admit solutions, respectively. Then,
Problem (P3) admits a feedback solution (4.7).

Remark 4.4. Note that the social control problem (P3) is essentially an optimal control problem.
Then, the feedback solution to Problem (P3) is equivalent to the feedback representation of its open-
loop solution.

We now introduce the following set of equations:

M4+ ATM + MTA+CTMC +Q — (B'M + DT MO)Tr?
x (BYM + D" MC) =0, M(T) = H,

M+ (A+G)TM+MA+G)+G M+ MG+ CTMG + GT"M(C + G)
— (B™M + D"MC) Y Y(BTM + DTMG) + PTDJA°Dy P + P” BT A
— (BM + D"MG)" Y~ (B"M + DTMC) — Qr + M°B,P
— (BM + D"M@&)" Y~ (B"M + D" M@G) =0, M(T) = —Hj,

M+ (A+G)TM° + M°(Ag + BoPy) + (M + M)F + PT BT A°

(4.12) — BT (M + M)+ D" M(C + &))" Y "Y(B"M° + DTMF)+ (C+ &) "MF
+ PTDIA(Cy + DoPy)) + (T = 1TQTy =0, M°(T) = (I — )THTY,

A° + A°(Ag + BoPy) + (Ao + BoPy)TA® + (Cy + Dy Py)TA°(Cy + Dy Py)
— (B"AT + D"ME)'Y Y (B"M° + D"MF) + AF + FTM° + FTMF
+T7QTy =0, A%T) =TT HT,

A+ AA+G)+ (A + BoPy)"A + FT(M + M) + A°By P
— (BTAT + DTMFPY'Y ' BY (M + M)+ DT"M(C + G)|+ FTM(C + G)
+17Qr -1 =0, A(T)=TTH( - 1),

where T 2 R + DTMD. From observation, we find that M, M, A are symmetric and M° = AT. For
further analysis, we assume B -
(A5) (4.12) admits a solution (M, M, M° A% A).

Remark 4.5. If (A5) holds, then by the continuous dependence of solutions on the parameter (see
e.g. [27, Theorem 3.5] or [26, Theorem 4]), we obtain that for sufficiently large N, (4.10) and (4.11)
admit solutions, respectively.

After applying the strategies of followers (4.7), we have
(4.13) dr; =[(A - BY ' Un)z; + (G — BY ' Un)z™) + (F — BY U)o dt
+ [(C = DY U Nz + (G — DY U n)x™) + (F — DY OY)wo | dW;

where Uy 2 BT My + DT MyC, Uy = BT My + DT MyG, and U8, = BT MY + DT My F. This leads
to

dz™) =[(A+ G — BYS (Un + Tn))a™) + (F — BY R Q)] dt

N
1 _ _ _
+ > (€= DY UN)a; + (G — DY TN ™) + (F — DY )ao] dW;.
=1

N)

For a sufficiently large N, by Remark 4.5 and the law of large numbers, () can be approximated by

the MF function Z, which satisfies

(4.14) dz =[(A+G - BY (¥ +¥))z + (F — BY " U°)z]dt,
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with
(@15) w2 BTM+ DTMC, ¥ 2 BTM + DTMG,
0 2 BT MO 4+ DT MF.
Based on Proposition 4.3, one can construct the decentralized feedback strategies for followers:

(4.16) i = =Y (Va; + Uz + W),

4.2. Optimization for the Leader. After applying the strategies (4.16) of followers, we have
the optimal control problem for the leader.
(P4): minimize Jo(uo,@(ug)) over ug € U9, where

T
Jo(uo, @(ug)) = E/o [|lwo — FOL%(N)FQO + |uol%, | dt + E[|zo(T) — FOx(N)(T)ﬁ‘IO]v

dzo = (Aozo + Boug)dt + (Comg + Doug)dWy, x0(0) = &,
di; = [(A— BY'W)i; + Gi™N) — BY 710z + (F — BY 0%z ]dt
+ [(C = DY), + G — DYz + (F — DY %) z0]dW;, 3:(0) = &
Since {W;(t)} and {z;(0)} are independent, for a sufficiently large N, it is plausible to replace &™)
by Z, which evolves from (4.14). In view of (4.1), suppose that the decentralized feedback solution for
the leader has the following form ug(t) = Py(t)xo + P(t)Z, 0 < t < T. Then, we have the following

optimal control problem for the leader.
(P4'): minimize Jo(Py, P) over Py, P € C(0,T;R™*™), where

T
Jo(Py, P) = E/ [|[wo — ToZ|g), + |Powo + PE|%, | dt + E[|xo(T) — Loz (T) |7, ],
0

drg = [(AO + B()Po)xo + Bopi‘] dt + [(Oo + D()P())Z‘o + Dopi] dWy, l‘Q(O) = &,
dz = [(A+ G —BY (¥ + 1))z + (F — BY '0%)z]dt, z(0) =&

Let Xo = E[zozl], X = E[z2T] and Y = E[zz]]. Then, by Itd’s formula [59], we obtain

(4.17) % =(Ag + BoPo)Xo + Xo(Ag + BoPy)" + BoPY + YT (ByP)"
+ (Co + DoPo)Xo(Co + DoPo)" + (Co + Do Po)Y T (Do P)"
+ DoPY (Cy + DoPy)T + DyPX (Do P)T,
(4.18) % =(A+G-BY 'O+ U)X + X(A+ G- BY (T + )T
+(F - BY 'Y T +v(F - BY 197,
% =(A+G - BY 1T+ W)Y + (F - BY ¥y X,
(4.19) +Y (Ao + BoPo)" + X(ByP)".

Meanwhile, the cost function of the leader can be rewritten as

T
Jo(Py, P) = / tr(QoXo — QoloY —T{ QoY + T Qoo X
0
+ Py RoPyXo + PT"RyPyY" + P{ RyPY + PT"RyPX)dt
+tr[HoXo(T) — HoloY (T) — TT HoYT(T) + T HoTo X (T)].

Denote Ag 2 Ag + BoPy, Co 2 Co+ DoPy, F2 F —BY 0%, A2 A+ G — BY"Y(VU + ). Define
the Hamiltonian function of the leader as follow:
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H(Py, P,0;,0,,03)
=tr (QOXO — QoY —TFQoYT +TEQoToX + PY RyPyXo + PTRyPYT
+ PIRyPY + PTRyPX + [AoXo 4+ XoAL + BoPY + YT (ByP)T + CoXoCT
+ CoYT(DyP)T + DyPYCT + DoPX (DyP)T)0T + [AX + X AT + FYT + Y FT)0F
+[AY 4+ FXo + VAL + X(BoP)"]0} + [AY + FX, + Y AT + X(ByP)7] @3)

By the matrix maximum principle [4], we obtain the following adjoint equations:

~61 = S = Qo P RoPy + 4561 + 010 + Cf0:Co + 705 + 6] F,
(4.20) ¢ -0, = %{ =TTQry + PTRyP + ATOy + ©3A + O3By P + (©3B,P)7,

—03 = g{; = PTRyPy —TEQo + (BoP)TOT + ©,F + (DyP)T0,Co + ATO3 + 034,
with the stationarity conditions
(4.21) 0= gg 2(RoPyXo + RyPY + BI©, Xy 4+ DI'0,Co Xy + DY, Dy PY + BI0IY),
(422) 0= gg 2(RoPyYT + RyPX + BYo YT + DI'e,CoYT + DI'©,DyPX + BIO1 X).

Note that ©; and ©y are symmetric matrices. Then, from (4.21) and (4.22), we obtain

Py=—-Ry'(BYe, + Dlo.,¢y),
(4.23) {0 o (By ©1+ Dy ©1C))

P=-1,'Blel,

where Yo=Rg + DI ©1Dy. After applying this into (4.20), we have

0, + ATe, + 0,40+ CT0,Cy — (BYO, + DFO,Co)T Yy (BI©, + DI'©,C))
+ FTO; + 0T F + Qo =0, ©1(T) = H,

(4.24) @2 + ATGQ + @QA — @3BoralBg@§ + ].—‘(Z;QPO =0, @Q(T) = ngofo,

O3 + ATO3 + O340 — O3B0 Y ' (B] ©1 + Df ©:Cy) + OF F + T{Qq = 0,
05(T) = —I'T H,y.

Based on the above discussions, we can get the following feedback strategies:

(4.25)

o =— Ty ' [(Bf ©1+ D{©:1Co)z0 + Bj 05 7)],
— Y Y (W + Uz 4 ), i =1,---, N,

where 7 satisfies (4.14), and ¥, ¥ and W¥° are given by (4.15).

THEOREM 4.6. Assume (A1) holds; (4.12) and (4.24) admit a set of solutions. Then, the strategy
(4.25) is a feedback (€1, €z )-Stackelberg equilibrium, where ¢, = €3 = O(LN) Furthermore, assume

that &,1=1,--- , N have the same variance. Then, the asymptotic average social cost of followers is
given by
.1 Lo % 2
A}gnoo ﬁJsoc(U tig) = [|§z|M(o) + |£‘M(O +2£5 A0)&i + €0l (0]
and

lim Jo(@,10) = E[£] ©1(0)& + £ 02(0)€ + £703(0)&)-

N —o00

Proof. See Appendix C.



427
428

429
430
131
132
433
434
435
136

137

MEAN FIELD LQG HIERARCHICAL GAMES 15

5. Simulation. In this section, we give a numerical example to compare the performances of the
open-loop and feedback solutions. The simulation parameters are listed in Table 1.

TABLE 1
Simulation parameters

Ao By Co Dy To Qo Ro g Ho

-10 1 -0505 1 1 1 1 2
A B G F ¢ DG F ITl, QRIIT1 H
-2 1 1 1 -02020202 1 1 1 11 1 2

Consider a multi-agent system with 1 leader and 100 followers. The initial distributions of states
for the leader and followers satisfy normal distributions N(10,2) and N(5, 1), respectively. The de-
centralized open-loop control (3.29) is given by solving (3.7), (3.8), (3.12) and (3.27). The solution to
the Riccati equation (3.27) is shown in Fig. 1. The decentralized feedback strategy (4.25) is obtained
by solving (4.12) and (4.24). The solutions to (4.12) and (4.24) are shown in Fig. 2. Fig. 3 gives
the curves of followers’ state averages and MF effects under open-loop and feedback solutions. Fig. 4
shows the state trajectories of the leader under the two solutions. It can be seen that state averages
approximate MF effects well under both solutions, and the state average under open-loop control is
larger than the one under feedback control.

R0

0 1 2 3 4 5 6 7 8 9 10

6F ,
A
\\
4r N 1
2F e 8
o A YU, R
I I I I it D et I e Vv
0 1 2 3 4 5 6 7 8 9 10
t
F1G. 2. The solutions to (4.12) and (4.24).
0 T T =
50+ i
100 s s s s s s s s s
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Ty

Fic. 3. Followers’ state averages and MF effects under open-loop and feedback controls.
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L Il
0 0.5 1 15 2 25 3 35 4 4.5 5

Ty

F1c. 4. States of the leader under open-loop and feedback controls.

6. Concluding Remarks. This paper studies open-loop and feedback solutions of MF-LQG
Stackelberg games with multiplicative noises. By decoupling MF FBSDEs and applying MF approxi-
mations, we obtain a set of open-loop controls of players and a set of decentralized feedback strategies,
respectively. Furthermore, the corresponding optimal costs of all players are explicitly given in terms
of the solutions to two Riccati equations, respectively. A challenge is computing the system of Riccati
equations for feedback strategies. A possible approach is resorting to reinforcement learning even if
dynamics are partially unknown.

Appendix A. Proof of Theorem 3.7.
To prove Theorem 3.7, we provide two lemmas.

LEMMA A.l. Assume that (A1)-(A4) hold. Then, the following holds:

(A1) sup E[|z™V) — 2 + [pN) — Exo[p]]* + 1) — Exo[l]*] = O(),
0<t<T N

_ N _ | N
where p(N) = % S pi and V) = % Y oieq G-
Proof. After applying u}, i =0,--- , N, we have

(A.2) dz; =(Az; + Gz — BY'BT ¢ + Fpay)dt
+ [Czi + (G — DYY(BTK + D" PG))z — DY'Byp + Fpaj|dW;.

By (A4), ]EfOT |uj|?dt < ci. Then, it leads to EfOT lzg|2dt < co. By (3.12), maxo<i<r E[|Z(t)|?] < 3.
This further gives that supy<;<p E[|Z;(t)[?] < cs. By (A.2) and (3.12), we obtain

dzWN) —z) = AW — z)dt

[Cz; + (G — DY'(BTK + D" PG))z — DY' By + Fpazj|dW;,

WE

1
N 4
=1

which gives

™ () — z(t) = ©(1,0)[z"" (0) — 2(0)]

Nt
+ % > / ®(t,s)[Cz; + (G — DYN(BTK + DTPG))z — DY'By + Fpaj]dW;(s).
i=1"0

Here, ®(t, s) satisfies % = A®(t,s), ®(s,s) = I. By (A1), we further have
(A3)  Elz™M() —z(t)

N t
205 (N = 2 1 2 — 2 12 2 *|2
<|®(t,0)|"E|z") (0) — 2(0)| +N2§1/0 ct|@(t, o)|" max Bz + [2]* + [l® + |25]*)ds
=

1 2 2 =12 ~12 2 *|2 1
<3 {120 max, [Eleol? + ez sup E(Jaf +[21? + lof? + 23] } = O(),

Note that p; = Pz; + Kz + . Then, we have

sup E[|p™N(t) — Exo[pi(8)]*] = sup E[|P(z™)(t) — z())]*] = O(1/N).
0<t<T 0<t<T
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From (3.5), (3.6) and (A.3), we obtain

sup E[|g™M (1) = Exo[gi(D]* = sup E[|PC(@"N(t) - z(1)*] = O(1/N).

0<t<T 0<t<T
464 U
465 LEMMA A.2. Assume that (A1)-(A4) hold. Then, the following holds:
1
sup Ele™ (1) — #(t)]> = O(=),
0<t<T N
166 (A.4) 1
sup Bl (1) —~ 2(0)? = O(12),
0<t<T
167 where 7,1 =1,--- , N is the realized state under the control uj,i=1,--- ,N.
Proof. By (3.14) and (3.2), it can be verified that maxlSiSN]EfOTﬂxj\Q + |uf|?)dt < c3. From (3.12),
we have

N
_ 1
d@™ —2) = (A+ &) =) — z)dt + 5 Z (Ca + Dut + Gal™) 4 Fag)aw;.

468 Similar to (A.3), we have
160 (A.5) Elz™) — 22 = O(1/N).
470 From (3.14) and (A.2),
)= [A@r — 2) + G@N) — D)dt + [C(zF — ;) + G — z)]dW;,
with 27 (0) — Z;(0) = 0. Let ®;(¢) be the solution to the following SDE:
d®;(t) = AD,(t)dt + CP;(¢)dW;(t), ®;(0) = 1.

471 d(z] —

472 Then, one can obtain
473 ot — 3 = /O t &; (1)@ ()G (s) — z(s))ds + /O t 3, (1)@ ()G (s) — z(5))dW; ().
474 Note that EfOT |®T (¢)®;(t)|dt < c. Then, from (A.5) we have

475 E|z} — z;|2 <2TE /Ot |B: ()] (5)*|G (N (5) — 2(s))*ds

476 12K /Ot |: ()01 (5)|*|G (2 (5) — 2(s))|*ds = 0(%).

477 This completes the proof. g

Proof of Theorem 3.7. (For followers). We first prove that for u € U., Jsoc(u) < oo implies that
EfOT(|zi|2 + |u;|?)dt < oo, for all i = 1,--- , N. In views of (A2), by [43] we have

N T
0o ZE/ lug|?dt — co < Jooe(u) < 00,
i=1 70

478 which implies Zf;l E fOT |u;|?dt < ¢1. By (2.1) and Schwarz’s inequality [59],

479 E|z;(t)]? < CQE/ |z (1) Pdr + 5

480 Z |2 (7)|2dT + c3.
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481 By Gronwall’s inequality, we have Z;V=1 E\xj( )\2 < Nege®?t < NegeeT.
482 Let &; = x; — 2}, @ = u; — uj and 2™ = & ZZ 1 Zi. Then, by (2.1) and (3.14), we get

183 (A.6) dz; =(Az; + Gi™Y) + Bu;)dt + (Cz; + GE™) + Da;)dw;, #;(0) = 0.

484 By (3.1) we have Js((ﬁ)( 0 ) = ¥ Zl 1 (Ji(ug, u*) + jz(u37a) +Z;), where

185 Ji(ut,w) 2 ]E/T (|2 = T2™) — T3 + |]%] dt

186 - émm — TN = T1d0(T)|%,

487 7o [ [(zr = To™ — Tya2g) Qs — Ta™) — Tyiig) + af Lu, + a Ru ] dt
0

488 +E[(27(T) = Ta™(T) = Tya3(T)) T H (2:(T) — T3N)(T) — Tydo(T))].

From (A.6) and It6’s formula it follows

N N
ZE[@T(T) (Hzi(T) — Hp2(T) — Hy, 25(T))] = Z E[z] (T)pi(T))]
7.;1 ; i=1
= ZEA { — i? [AT]Z + GTE].'O [Pi] + CT_'L GTE]:O[ ] + Q%; — QrExo[Z;]
i=1

+ (T = D'QT ] + [A%; + GE™) + Buw)"p; + [CF; + GE™) + Dﬂi]Tq:;} dt
_E/ Z{—x [Qz; — Qrz + (I' = NTQT1zf] — 4] Ru; }dt

+ Zu«: / T[GT (™ — Epolpi))dt + GT (™ — Eolgi])] dt.
489  From this and direct computations, one can obtain

N
%ZL: Z2E{ / # [Q@; 7)) + Qe —2) + 6T (PN ~Ex[p)

+GT (@) — Epolg)]dt + &7 (T) (H(@}(T) = 3(T)) = He(a!™ (1) = #(1))] |

- Cc N T 1/2 T (N) N
190 gﬁz [E/ \ii\th} . []E/ (| — 2> + |2 —z)* + [P — Exo (D] [?
i=1 0 0
+ g™ —Epo g ? dt} +O0(—
[7 Fold;| ]) (\/N)
1
<O(—=) = €1.
- (\/N) !
491 Note that by (A2), Zl L Ji(@,uf) > 0. Then, we have Jeoe(u*, ud) < Jooe(u, , ug) + €1.
492 (For the leader). By (3.15) and Schwarz’s inequality, we have
! () _
03 (A oy, u') = [ 125 = Toz + Toal™ = 2), + usfh,d
0

+E[|z3(T) - fgfm + Do (@a™(T) — 2(T))[3,, ) dt
< Jo(uf, u*) + /0 [2(E|z — Toil* - E|QoTo(t") — 7)[?)

1/2
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+E[To (2 — 2)[3, ] dt + E[|To(«(T) — 2(T)) |, ]
+2(Elay(T) - Dox(T)? - E|HoTo (+(T) — 2(T))2)
< Jo(ui, u*) + O(1/VN).

It follows from Theorem 3.4 that Jo(uf, u*) < Jo(ug,u*). This together with (A.7) implies
(A.8) Jo(uh, w*(ug)) < Jo(uo, u(ug)) + O(1/VN),

for any ug € Up. From (3.15), we obtain

T
Jo(uo, u) :IE/ [lzo — Tozl™ + To(a™ — 2) 3, + Juol%, | dt
0

+E[lzg(T) — Doat™(T) + To(@™(T) — (1)) 3, ] dt
<Jo(ug, u) + O(1/VN),

which with (A.8) gives Jo(ug, u*(uf)) < Jo(uo,u(ug)) + 2, where €5 = O(1/v/N). O

Appendix B. Proof of Theorems 3.8 and 4.6. To prove Theorem 3.8, we first give a
lemma. Consider an MF-type problem: optimize the cost functional

T
(B.1)  Ji(uy) :E/O (Iz — TExo[2;] — T1zold + |uil%)dt + E[|2:(T) — TExo[2;(T)] — T120(T)|%]

subject to (z;(0) =&;)
(B.2) dz; =(A%; + Bu; + GExo[z;] + Fxg)dt + (Cx; + Du; + GExro[Z;] + Fag)dW;.

LEMMA B.1. Assume (A1) and (A4) hold. For Problem (B.1)-(B.2), the optimal control uj is
given by (5.6), and the corresponding optimal cost is E[|£i|%,(0) + |€0|%<(0) + 20T (0)Zo] + s7.

Proof. Note that Exo[Z;] = T satisfies
(B.3) dz =[(A+ G)z 4+ Bu+ Fuxo)dt,
where @ = Exo[d;]. By a similar proof to [58], [49], we obtain
Ji(ui) =E[|xio — Zo|Bo) + g (P(0) + K(0))Zo + 20" (0)Zo] + s
+ IE/OT [lu; — @+ YI(BTP + DTPC)(z; — 7)[%

+|a+ YN(BT(P+ K) + DTP(C + G))z + BT¢ + DT PFx|3]dt
>E[[€:[30) + [€olF 0y + 207 (0)Z0] + s7-

Proof of Theorem 3.8. Applying the control (3.29) into the social cost, it follows that

Z\HSA

CN 0
> E / — T Tyl + fug ) de + a7 (T) = D™ (T) = Pra (1)1
.y

T
{/ |l‘i—F.’f—F1.’f0+$z —.’i‘i—F(LL'SkN) —i') —1—‘1(.7}8 —.7?‘0)|22
i=1
'(BTP + DTPC)z; + (BTK + DT PG)z + BT ¢ + DT PFx,)[3] dt

- ¥
+Y
Hai(T) = Ta(T) = T1ao(T) + @}(T) = 2(T) = D@ (T) = 2(T)) = T (25(T) = 20(T))[ |-
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519 By Lemma A.2 and Schwarz’s inequality, one can obtain
520 | soc (u*,ug) ZJZ
1 (N) C N 1/2
521 <— IE/ = 7|5+ TN — 2)% + [Ti(af — 20) |3 ]dt + — sup (Elz} — 4|2
*NZ [| |Q IT( )|Q IT'1 (g o)\cﬂ N;ogtgzr( | |Q)
X 1/2 N 1/2
522 — sup (E|[(z M _z sup (E[Iy(zf — 2o)l2
N; Sg IT°( Z:: Sg T ( o)|Q)
1
523 O(—=).
e =0R)

524 This together with Lemma B.1 leads to (3.30).
(For the leader) By a similar argument with the proof of Theorem 3.4, one can obtain

T
Jo(up, u*) = E{ﬁoTyo(O) + &£7'5(0) +/0 [(Rouf + B{ yo + BY 4, u3>]dt}.

525 By (3.26), we have limy_,o0 Jo(ug, u*) = E[dy0(0) + £75(0)]. Thus, the theorem follows. O

526 Appendix C. Proofs of Theorems 4.1 and 4.6.
Proof of Theorem 4.1. Suppose that {u;,7 = 1,--- , N} is an optimal control of Problem (P3).
Denote by &; the state of player ¢ under the optimal control ul For any u; € L2 2(0,T;R") and
A€ R (A#£D0), let uf‘ = u; + A\u;, = 1,--- , N. Denote by Jco,x the solution to the following
perturbed equation:
2} =[Aoz) + Bo(Pox)) + Pa\V)]dt + [Coa) + Do(Pox + P\V)]awy,
f‘ =(A o} + B(u; + M) + Gl'(N) + Fx())‘)dt + (Cmf‘ + Du} + G’xg\N) + F’mf})dWi,

xo( ) = &o, xz( ) =&, i=1,2,--- N,

507 with 2™ = LSV X Let 2, = (2} — &)/ Tt can be verified that z; satisfies
. dzy = [(Ao + BOPO)ZO + BoPZ ]dt + [(C() + DoP())ZO + DopZ(N)]dWO, ZO(O) =0,
528 _ _
dz; =[Az; + Bu; + GV 4+ Fzoldt + [Cz; + Du; + GV 4+ Fzo]dW;, z(0) =0,
529 where i =1,2,---,N, and z(V) = % Zfil z;. From (4.2), we have
530 (C.1) T (i + M) — T8 (@) = 2011 + N1,
531  where
| X
532 (C.2) L= Z]E/ (27 Qzi — )T Qrz™) — & Qr, 1Tz — (2T Qr, 20
i=1 70
N
533 + 20 TT QT 20 + @i Ru; | dt + Y B[] (T)Hz(T) — (#V)(T))" Hpa™(T)
i=1
34 — ST HT 2N(T) = [#(D)]T Hy, 20(T) + 32 (1) Hy2(T)],
535
1o [T
536 (C.3) I, =N ZE/ [|zl\2Q - |z(N)|?QF - 2FZOTQ?12(N) + 2 TT QT 20 + ug| R dt
i=1 0

N
537 +ZE[|zi<T>|%I—|z<N>(T>\%f—2(zO<T>>THlez< (T) + l20(T)IE 5, ]
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538 Let {p;, (j{, i,7=0,1,--- N} be a set of solutions to (4.3). Then, by It6’s formula, we obtain

N
539 S E[ETH@ - D&™(T) + TTHT i (1), 20(T))]
=1
N
540 = ZE[%(T) 20(T)) = (50(0), 20(0))]
541 — Z / (Ao + BoPo)"po + FTp™) + (Co + DoPy) gy + F7¢™)
542 - FlTQ((I —T1)&™) —T1#0)], 20) + (Po, (Ao + BoPo)zo + BoPz™))
543 + <(jg, (Co + D()P())ZO + DoPZ(N)>}dt
544 = ZIEI/ { [FpN) 4+ Fg™N —TTQ((I — T)#™) —Ty#0)], 20)
545 + (PTBTjy + PTDT, zl>}dt,
546 and
N
547 > E[(HZ(T) — Hpa™" ) (T) + (T — I)T HT 1o (T), 2:(T))]
=1
N T
548 :Z]E/ {(—[sz Qrz™) + (I — )" QT + PTB po + PTDI ], =)
=1 0
549 +(FPN) 4+ Fg™) 20) + (BT ; + DT, ui>}dt,

550 where the second equation holds since Zzl\il E(GTpN), ) = Zi\;l E(p;, Gz™)) and Zfil E(GT¢™), 2;) :I
551 Zf\il E(g}, GzN)). From the above equations and (C.2),

1 T y y
552 L= ZE/ [(Q#; — Qra®™) + (I — )T QT%o, ;) + (IT QL — N#™) + TTQT'140, 20)
i—1 0
N
553 + (R, u;)|dt + Z E[(Hi(T) — Hpi™N(T) + (T — 1) HTwo(T), z(T))
=1
554 + (ITH( - D#™(T) + TT HD123 (T), 20(T))]
1L T
_ - Ty Tyi
555 (C.4) =¥ ZE/O [(Rit; + BTp; + DT'g!, u;)]dt.

Note that Q@ — Qr = (I —1)7Q(I —T) and H — Hy = (I —T)TH(I —T'). Then, we have
1 (T
= ZE/O [z — 214 + |2 Mo, +2(020)T QI — 1)2™) + D20l + |us|%] dt
N
+ D E[|z(T) — 2T + 2T 5, — 225 (TVHE 20T + [Tr20(T)3]
1L T
=% Z]E/O [Jzi — 2N % + |(I = T)2®) = Dyzofd + uil %) dt

N
+ ZE[I%(T) — M)+ (L= D)z™(T) = Dizo(T)[].
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Since @ > 0, R > 0, and H > 0, we obtain I3 > 0. From (C.1), @ is a minimizer to (P1) if and only
if I; = 0, which is equivalent to Ri; + BTp; + DT¢i =0, i =1,--- , N. Thus, we have the optimality
system (4.3). This implies that (4.3) admits a solution (Z;, p;, q{, i,j=1,--- N). O

Proof of Theorem 4.6. (For followers). By (2.6), it can be verified that under feedback strategies
(2.5), IEf(;‘F(|aro|2 +|z|?)dt < c. This further gives IEfOT(|a:i|2 + |z 2)dt < ¢;. Besides, from (2.6), we

have R
d(z™N) —7) =(A + G + BK)(z"N) — z)dt

1 . _ . _
+ N [(C + DK)z; + Gz™) + DK 4 (F + DKg)ao]dW;,

S iM=

Similar to (A.3), we have for any ¢ € [0, T,
Ele™ (1) — 2(t)]” < [8(t,0)"Ela™) (0) — 2(0) "
1 . [t
L 5 12 ()2 | (=2 2\ 7 )~

(C5) o Z/ e[t )] e E(Jaif? + [ + 12l +|aof)ds = O(<p),
where ®(t, s) satisfies dq)(i ) — (A+G+ BK)®(t, s), ®(s, s) = I. Note that z = E[z;| F°] = E[z(™)|F]
(which follows from (2.6)). Then, we have
(C.6) Elz" (2™ - 7)) = E[zTE[z(") - z|F°]] = 0.

From (2.3) and (C.5), we have

€7 I o, ZE / (il = [, — 228 QE o™ + [Pyzof?y + s3]
1 N
7 SB[ — [ MD)fE, — 2(Hp, w0(T)7#(T) + [Drao(T) ]
=1
1o (7
SN ZE/O [|$Z|é — |5c\ér — 2370TQ1§15C + |F1mo% + |ui|?%]dt
i=1

N
+ % ZE[lm(T)lif —|2(T) [y, — 2(Hp, 20(T) " 2(T) + [Trzo(T)|4] + €1

_J(N)(uo,u)+61.

We now deform Jééi)(uo, u) by the method of completing squares. Note that Z = E[z;|F°] satisfies
(C.8) dz = [(A+ G)T + Bu + Fx)dt,
where i = E[u;|F°]. Then, it follows that
d(z; — 7) =[A(z; — Z) + B(u; — @) + Gz — &))dt + (Cx; + Du; + Gz™N) + Fag)dW;.
From (C.6), applying 1t6’s formula to |z; — Z|3,, we obtain
(9 Eflnu(T) - 3(T)fy — lo:l0) — 5(0) By o)
=E /T {(xi — )M+ ATM + MA+CT"MC)(x; — &) + (u; — @) " DT MD(u; — @)
+ ;(ui —a)"(B"M + D"MO)(x; — z) + ' D" MDu + o F* M Fxq
1 (C+ G M[(C + G)Z + 2Fxo) + 2a* DT M[(C + G)T + Fay]
+2(™) — )T (GTMC + GTM)(w; — ) + G"MD(u; - ) }dt.



586

587

588

589

590

591

592

594

MEAN FIELD LQG HIERARCHICAL GAMES
It follows by (C.8) that
(C.10) E[z"(T)(H — Hp)z(T) — 27 (0)(M(0) 4+ M (0))z(0)]

:]E/T {T[M + M + (A+ Q)T (M + M) + (M + M)(A+ G)|z
+ QO;ET(M + M)Bu+2z" (M + M)Fxq }dt.
By (2.6) and It6’s formula,
(C11)  E[z] (D)ITHD1ao(T) — 2 (0)A°(0)20(0)]
=E / ! {ad[A® + (Ao + BoPy)"A® + A°(Ag + BoPo) + (Co + Do Py) " A%(Co + DoPo)lzo
+ 2Ox§ [A°BoP + (Co + DoPo)" A’ Dy Plz + 22" P D{ A’ Dy Pz } dt.
Applying Ito’s formula to z{ Az and 27 Mz, we have
(C12) E[ — g (T)Hy, #(T) — @ (0)A(0)z(0)]
—]E/O {23 [A+ MA+ G) + (Ao + BoPy) Az + ] A(Bu + Fxo) + 7 PT BY Az }dt,

and

(C.13) E[—2"(T)Hp, xo(T) — 2" (0)M°(0)(0)]

23

T
:E/ {zT[M° + (A+G)"M" + M°(Ag + BoPy)|7 + (Bt + Fxo)" M o + 37 M°By Pz } dt.
0

(C.13), one can obtain

C.9)-
Jééi)( u)
N
1 T T o —_ —
N ZE/O [loi = 2l + [2lG-qp + 200 = DT QTywo)" @ + [Pawolgy + fui — alf + |al7] dt
i=1
1 Y A )
+N ZE[|x1(T) —z(T)|3 + |J_?(T)|§{_Hf +2[(T — DT HT 120 (T)] T 2(T) + |F11:0(T)|%-[]
=1
N
1 - — —
=+ 2 E[l2i(0) = 2(0) 3s0) + 12(0) 31 0) 570y 226 ()A0)2 M (0) + [20(0) 3, 0]
=1
1 LT
— Ty Ty-1 A T - o o
+% ;]E/O {(xz )T (2 — 3) + (wi — @)Y (uy — ) + 2(u; — @)V (2; — )

+aT a4 2T (U + O)TT W 4+ 0)z + 20T [(U 4 0)Z 4+ $Oz0] + (0z)T Y100
+22T (0 + ) TY 1000 + 2™ — 2)T[(GTMC + GT M) (z; — &) + GT M D(u; — ﬁ)]}dt

= N Z]E ‘€z|M(0) + |§| M(0) + 2§gA( )gz + ‘§0|A0(0)]

_ -1 —\(2 - -1 T = 0 2
+N;]E/O fus = a0 0 0 = )+ [+ T [0+ D)+ WO
12(e™ — H)T[GTMC + GTM)(z; — &) + CTMD(u; — )] }dt

]E[‘giﬁv[(o) + |g|?\2(o) + 2537\(0)51' + ‘505\0(0)]

+NZE/OT (@™ = 5)T[(GTMC + GT M) (@i — 7) + GTMD(u; — w)]dt.
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Note that @; = — Y1 (Vxz; + ¥z + ¥0zy). Then, from (C.5) and (C.7), we have J§é\£)(ﬁ0,ﬁ) <
Jgé\é)(a07u) + €1, where ¢, = O(1/V/N).
(For the leader). From (2.2), we have

T
(C14) o, @lite)) <Jo(io, (o)) +E / [2(170 () = To(8) P 1QoTo (2™ (1) — 2(1)) )

+ Do) = 2()1, |t + [Po(@™)(T) = 2(T))I3, |
+2E [(|x0(:r) — oz (T) 2| Hol'o (2 ™)(T) — 2(T))[?) "/
<Jo(iig, @(i0)) + O(1/VN).

By Ito’s formula, one can obtain
(C.15) Elzg (T)Hoxo(T)] — Elzg (0)01(0)20(0)]

=E /OT (28 (01 + ATO1 + 0140 + CFO1Co) o + 2ul (BL©1 + DEO1Cp) ] dt,
(C.16) E[z7 (T)TE Holoz(T)] — E[27(0)02(0)Z(0)]

- /0 ' [27(05 + ATO, + 02 A)z + 228 FT 0,7 d,
and
(C.17) E[z"(T)(~T§ Ho)zo(T)] — E[z7(0)03(0)0(0)]

=E /0 ! [77(03 + ATO3 + ©3A0)xo + 77 O3 Boug + af FT O30 dt.

It follows from (C.15)-(C.17) that

(C.18) Jo(uo, u(ug)) =Elag (0)01(0)z0(0) + 2" (0)02(0)Z(0) + 2" (0)03(0)xo(0)]
+ E/T [xOT(BoTel +DT6,0) ==Y (BYO, + DI0,Cy)z0
+ jT(S)gBOE_lBg 037 4 22703 B,=~ (B0, + DT0,Cy)x0
+2ul'[(BYO, + DI©.Cy)xo + BT ©37] + u{EuO} dt

T
—E[e701(0)&) + E7Ox(0)€ + E705(0)&] + E / (o
0
+E71(B 61 + DI €:Co)wo + = B Os2[2 ] dt
>E[£5 ©1(0)& + £ 02(0)€ + £7'03(0)&0] = Jo (o, U(d)).

This together with (C.14) leads to Jy (i, @(ti0)) < Jo(ug,u(ug)) + O(1/v/N). The reminder of the
proof is similar to that of Theorem 3.7. O
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